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Abstract Fuzzy control has been recognized as an alternative to conventional control

techniques in situations where the plant model is not sufficiently well known to warrant
the application of conventional control techniques. Pt_-cisely what fuzzy control does and
how it does what it does is not quite clear, however. This paper deals with this important

issue and in particular shows how a given fuzzy control scheme can resolve into a
nonlinear control law and that in those situations the success of fuzzy control hinges on its

ability to compensate for nonlinearities in plant dynamics.

INTRODUCTION

Fuzzy logic control has been recognized as an
alternative to conventional control

techniques(primarily PID, or switching type control)
for application in industrial process control and
manufacturing automafion(Sugeno 1985). More
often than not, however, empirical observation
provides the only means to a comparative study of

performance of fuzzy controllers in relation to their
conventional counterparts. While this fact is

recognized and even appreciated by practitioners in
the process control area, precisely what a fuzzy
controller does, that is from an analytical

standpoint, and how it does what it does is still of
interest.

In order to investigate this issue, we will consider
the notion of parametrized fuzzy sets and discuss
its implication in analysis of fuzzy control
algorithms. This idea, it turns out(Langan and
Tomizuka 1990, Langari 1990, Langari 1992) gives
rise to a framework for analysis and synthesis of
non/inear control strategies that emerge quite
naturally from an initial statement of a given control
strategy as a fuzzy linguistic control algorithm.

In this article, we will use this framework to explain

how a given fuzzy control swategy deals with
process nonlinearities that conventional controllers,
for instance PID, generally do not. In particular, we
apply this framework to the problem of control

synthesis in a typical situation where asymmetric
response characteristics of the process precludes, or
severely encumbers the application of
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conventional(linear) control theory. We further
show how in this situation an appropriately designed

fuzzy controller overcomes this difficulty and by in
effect compensating for the underlying
nonlinearities produces superior behavior.

We start with an overview of fuzzy control

FUZZY CONTROL SYSTEMS

The typical architecture of a fuzzy conuvl systems
in shown in Figure 1. As a rule based control

strategy, fuzzy linguistic control is based on explicit
representation of knowledge of operation of the
process as condition action rules of the form

Rjj: ife(t) isAj and de(t) isB I thenu(t)isCj,

where e(t) denotes the instantaneous value of the
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Figure 1 Architecture of a Fuzzy Logic Control
System



processerrorat time t and de(t) is short for

_(e,t), which stands for --de or _ ed¢. Further, /]j,
dt

belongtocollectin ande;
of fuzzy subsets defined over the domains of

definition of the relevant variables, that is, E, DE,

and U respectively and Rjj denotes the j,l* rule in

the rule set R. In particular Rjj may be

o,., _. _, ¢' 0,,_,_., _,

_,, c"].,.,

Ol.i U_ IJ U

Figure 2. Fuzzy partitioning of the domains of
definition.

be viewed as associating elements A, of a_ and Bt

of _ with element C,_ of _;, thereby forming a

fuzzy relation I i_sjover the Cartesian product

space, E x DE x U. From this standpoint, the given
fuzzy conl_l algorithm in effect amounts to a

disjunctionofsuchassociations,asin9i=_jj,

which Mamdsn/and Assilian(1975)refertoasthe

.fuzzy relation matrix.

Control Computation

Suppose, at some instance t, as shown in Figure 2,

the error e(t) has positive grades of membership,

/J_, (e(t)) and/J_., (e(t)) to some pair ,_j and ,4,._

in _'. Similarly, suppose de(t) belongs to some

pair Bl and Bt.i in _. At this instant, the following

control rules apply

INote that the distinction in the notation used, that is Rj,! vs. ]_/.I

reflects the distinction between roles and associations. 349

Rjj: ife(t)isAj andde(t)isB I then u(t) is C,j

R,.u: ife(t)isAj. I andde(t)isB I then u(t)is Cj. u

R j. t.I+i : ife(t) isd,+ t and de( t ) is Bt+ ! then u ( t ) is C j +u÷ 1

R,.,.l: ife(t) is /f, andae(t)isB,., thenu(t)is Cjj.i

with each rule satisfied to some degree. The
corresponding truth value is defined, for instance
for the first rule, by

IXsj=min(l_,(e(i)).lui,(de(t))) (I)

or, alternatively by

.. (2)
The iruth values of other rules in the above set are

similarly defined.

Note that the product instead of rain results in
interactivity between the truth values of the
components of the antecedent clause. This fact is

essential to our analytic treatment(Langari and
Tomizuka 1990.)

Now, representing the consequent clauseof each

R,j rule, that is , by its single representative, or

defuzzified, value that is U jj , defined as

the control action, u(t), is computed as:

(3)

_p:,Uj,
-
_-_#J.' (4)
J3

where j and l range over the indices of all

applicable rules. Note that this approach is based on
a variation of the Centroid of Area(COA)
defuzzification rule(Zimmermann 1991), but has

improved analytical properties(Langari and
Tomizuka 1990).

ANALYSIS OF FUZZY LOGIC CONTROL

ALGORITHMS.

Consider the single input, single output fuzzy
linguistic control system shown in Figure 1. Here
we develop an analytic description of the control

law in the form, u = FLC(e, de).



Definitions and Assumptions

Let us denote the domains of definition of e, de,

and u by E, DE, and U respectively. Then, as

shown m Figure 2, collections _={A,},

-- }, ande --{G} of co.v, .
and normal fuzzy subsets(Duboi$ and Prade 1980)

effectively pm_ition E, DE, and U, respectively, as
follows.

Each element /]j of _af is centered at some

Ej eE and is fu_er characterized by a pair Lj(.)

and Rj(.) of left and right characteristic

function_cf. Appendix A). Similarly, each B_ E

is centered at some DE: _ DE and is characterized

by/_'(.) and _'(.). Moreover, each element Cjj is

represented by its defuzz'ified value, Ujj.

We further place some constraints on _ and _ as

follows. First, we require that _ and _l_ form true

fm=y parations of E and DE respectively.

1.Le, :and be
collection(s) of fuzzy subsets defined over E (and
DE.) Then, for each element e _ E

XlA_j (e) = 1 (5)
J

(A similar condition holds for _.)

The interpretation of Assumption 1 is that,

externally, fuzzy classification must be compatible
with feature based classification in terms of

classical sets, where each element is categorized

under one and only one class. This assumption is

crucial to the development of our results and in

effect amounts to objectification of the control law.

A sufficient condition for Assumption 1 to hold is

that the characteristicfimctionsof ._j (and B,) be

linear2:

Assumption 2. For each j, let A/ Ec_ be defined

in terms of a pair Lj(.) and Rj(.) of left and right

characteristic functions. Then

Rj(e)= l-(e-E,)//Jt (6)

L,(e)=t-(E,-e)l a)

and given j. and j + I,thelinesegments definedby

Rj(.)and Lj.,(.)intersect E precisely at E, and

E_.t respectively.(A similarcondition holds for

_)

This assumptionimpliesthat,asshown inFigure3,

rj t_., /:-_ _, 0t,., ' ot

,. L, c%,, _'o.,_'_.....

UId I.tl,* t.J 01_1 Oi**_.*

Figure 3.True Fuzzy Partitioning.

t and a_.,, respectively representingthe inverseof

the slopes of the line segments defined by R_(.)

and Lm(- ) , must be equal. Let us denote this

unique slope by rnj:

! 1
mF = _ = _. (s)

Pj Of/+ I

Similarly, a'm and /]_, must also be equal; let us

I 1
defum m_: .... to clearly indicate this fact m

well.Consequently,we can define AF./and ddgE_

asfollows:

AEj = Ej., - E], (9)

&DE l = DE_. i - DE r . (I0)

Let us also define K j., and K_._ as follows.

Definition 1. Let us denote the functional

relationship between U j_, E _ and E j._ as:

Ujj = KjjEj + K'jjDE v (11)

2A generalization of this condition, where nonlinear characteristic

functions are allowable, is possible. The present discussion,

however, does not hinge on this fact. The interested reader may

refer to Langari(1992). :350

Then for each pair, j and i, K_._

implicitly defined by (11).

and K'_: are



Note that (11) simply relates Uj._ to Es and DE t in

a compact form and does not in any way conslrain

Ujj"

We further define AKJj.u...as follows:

industrial processes; it is a relatively low order

model, and has the somewhat dubious distinction of

being non-minimum phase. The parameters, a,, and

a 2 are given by

a, = a,0 + 8a,, (20)

_,j.,., =K,,.,- K,.,. (12) a_ = a_ + 8a_, (21)

AK'j.,, = Kj.,._- Kja, (13)

AK/.,.,.,: Kj.u. , - Kj,. (14)

AK"..,=fj..,-K_, (15)

where 8aj and ¢_a2 reflect the variations in the plant

parameters.

Suppose now, as it is commonly done in practice,

we knew the process model and were to design a

simple proportional plus integral control law:

AK' Ss.lx = Kj.,j - K;j , (16)

_:j.,.,.,= K;.,.,.,-K' (17)jd"

Now in view of the above assumptions the

expression for u(t), given by (4), resolves into

,,(,)=x,.,.,(,).,,(,,(,)-E,)l_,,.<,z,.,+_",.,wE,]+

_,,_,).,;(,_,)-oE,){_r',.,E,._",.,_E,.,].

, ,I ' # DE/ ...... ,l( A'_"..... - .l_ti_ .... -A/C ,.la) ,.,+ lmjm;! el./J- E sJ[ dl_l J- DE IJl., . ,,

/t_, ....-_, ,.,.,j_E,.,+
1.(_,....- _',..,),,,,,

(18)

The implication of the above formulation is that a

given fuzzy logic control algorithm in effect
amounts to a nonlinear control law that is further

described in terms of three terms: one that is linear

in each of e(t) and de(t),one that is linear m each

of e(t)-Ej and de(t)-DE I , and finally one that is

bilinear in the latter two terms. In effect the control

law given by (18) reflects the capacity of fuzzy

logic control to interpolate across the situations
where individual control rules are directly

applicable. We will see next how this capacity can

be used to develop a control strategy that deals

effectively with nonlinearities that commonly occur

in process control.

APPLICATION

Let us consider the dynamic system:

.li"I : aix I + alx 2 + bu,

-r2 =xl, (19)

y = X 1 --X I ,

which reflects the behavior of a rather broad class of
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= kpe + kt_e d't, (22)U

o

perhaps based on nomin_,l values of the plant

parameters, a,o, and a2o,as follows.

The plant and controller Iransfer functions are given

by:

1- s (23)
_'(') : .: +a,os+a,,'

G:(s)= k<(s+y) , (24)

where y> 0, kc = kp is same as the proportional

control gain, and k_ = yk_ is the equivalent integral

gain.

Now, assuming that the closed loop system will

behave as a dominantly second order system, the

closed loop characteristic equation is given by

A(,): (.,+p)(.: +2_<.,,_+<0'). (25)

where p is assumed large, we can use any number

of ways of selecting _ and tom and thus k_ and y

(Franklin, Powell, and Emami-Naeini 1991). For

instance, we can simply pre-select 7 and then

choose _ for desired response pattern and thus

determine the gain k_.

In practice, however, variations in the parameters of

the plant, that is _a_ and ¢_a2 , affect the behavior of

the process, and as a result the desired response is

not reproduced as predicted. For instance, let us



suppose that these variations are function of the

process error 3, e"

definition of the linguistic term set defined over the

domain of definition of the process error.

8a, = -asgn(e), (26)

6o2=- sgn(e), (27)

where _ > 0.

This situation happens in arc welding, for instance,

where active heating and only passive cooling is

available(Langari and Tomizuka 1988). A

consequence of this change is that a fixed set of

gainswillnot work well,no matterwhat valuesone

chooses. Alternatively, one may resort to adaptive

control. Generally, however, this approach requires

slow variation in the plant parameters. One could

also, in principle, rely on robust control, perhaps

within the H. framework. The drawback of this

approach, however, is that while robust performance

may be guaranteed, uniformly robust performance
is not. These claims should not be sml_sing since

neither adaptive control or robust control is really

meant to compensate for strong nonlinearities in the

plant model.

Given this fact, therefore, one should at least ideally

consider nonlinear control-- global or feedback
linem'ization.Indeed if the nature and extent of

nonlinearity is known reasonably well, through a

reasonably accurate plant model, one would do just
that. Moreover, even in the absence of a formal

model, it is our conjecture that the human operator

of the process, having learned the peculiarity of its

behavior, develops response behavior that m

practice amounts to a nonlinear conu'ol scheme that

compensates for the dominantly nonlinear, and

undesired, characteristics of the process. In effect

s/he globally linearize the process and compensates

for the deficiencies in its dynamic response
characteristics.

In the context of the current example, m particular,

it seems plausible that a human operator would be

able tO compensate for variations in the plant

parameters, as required and as shown in Figure 4

produce response pattern superior to any linear

control strategy.

Analysis of Response Pattern

Clearly, assuming that the control action of the

human operator is described in linguistic form, the

key factor would be the manner of definition of the

rule set and its constitutive linguistic term set. This

is evident, as shown in Figure 5, in the manner of

3Actually it would be more accurate 1o consider variation as a

function of the process input so as to reflect the coupling between

state and input variables, however, in closed loop control the input

is itselfa function of the error. 352
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Figure 4. Response patterns of fizzzy vs. linear
control.
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Figure 5. Definition of fuzzy membership
functions.

In particular,the asymmetry in the definition of

terms such as small-positive and small-negative,

denoted in the figure by SP and SN respectively,

reflects the variation in the proportional gain across

the origin of the domain of definition of e.

Now, using the formalism presented earlier, one can

show thatthe operator'saction,interpretedabove in

linguistic terms, effectively amounts to a nonlinear
conu-ol scheme

t

u = kpe + k, f e dx, (28)
0

where kp,is given by kp = kpo-asgn(e)/b, which

in the case of the regulationproblem, in effect

cancels the nonlinear terms which we attributed

earliertoparametricvariation4.

CONCLUSION

4In reality when the setpoint is changed, this cancellation does not

hold in the exact sense, however, since the plant dynamics is still

linearized and stable, treating the setpoint change effect as a

disturbance which results indiminishing transients is a reasonable

assumption.



In this paper we showed how fuzzy control can be
viewed as a paradigm for designing nonlinear
control strategies in situations where the plant

model is not a priori known-- at least sufficiently

well--- to warrant the application of conventional
control theory. In particular, we made a point
regarding the use of fuzzy control in situations that
occur frequently in industrial process control where
(nonlinear)dependence of the parameters of the

plant on its state variables precludes the application
of linear control theory and thus nonlinear control,

albeit by means of fuzzy control, seems to be the
most appropriate approach. The framework
presented here, however, is somewhat restrictive in
that it requires a specific form for pararnetrization
of fuzzy sets(LR) and places some resUictions on
the manner of definition of the control

rules(_.bt = 1). To be more widely applicable, this

framework needs to to allow for a wider range of
nonlinear control schemes aM also to allow for

nonparametrized fuzzy sets.

APPENDIX.

A. Parametrization

Although not absolutely essential, parametrization

simplifies quantitative description of fuzzy subsets.
In LR parametrization(Dubois and Prade 1980), a

fuzzy subset ,4, defined on some universe of

discourse U, is characterized, in terms of its
membership function, as follows:

fL((u°-u)/a) ifu_u° (29)
lz_(u)=_R((u-u,)/_) ifu>u,

where, as shown in Figure 6, L(-) and R(.)

characterize the leR and right halves of A, relative

to its center value, u0, that is where the linguistic

term that ,4 represents fully achieves its meaning,

or is maximally satisfied. Moreover, Ix(and 8)

parametrize L(.)(and R(-)), which typically takes

the form

Imax(0,1- [xl' ) ,

L(x) = t el't' '1+[x['lor

where p > 1 in all cases.

or

, (30)
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Figure 6. Parametrization of a fuzzy
subset.

Finally, it is sometimes sufficient to use a simple

linear form, based on in

which case, iX(or j_), discussed above, would

represent the inverse of the slope of the
characteristicfunction:

(31)

(32)
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